
VME Clock Timer Board
Analog control of AMD9513 channels and clock events

R. Goodwin
Oct 10, 1989

The VME clock timer board uses four AMD9513 chips each of which provides
two 32-bit timers with one µ sec resolution in the settable delays. It also includes
a 256-byte memory which specifies which of the channels (up to eight) is
triggered for each of the 256 possible clock events. Each bit position in the byte
corresponds to a different timing channel. This note describes how the VME
software implements control and readout of these timing channels.

Design
The generic parameter page is typically used for display and control of

numeric values via analog channels. When new devices are added to the system,
it is worth trying to see if they can fit into this generic scheme and thus inherit
the features that parameter page interaction provides. It also serves to present a
consistent interface to the user. The features of the clock timer board that require
support for numeric values are these:

• Read and write the 32-bit delay settings (timing channels)
• Set possible multiple clock events which can trigger the delays
• Read what clock events are currently set for each timing channel

Since the delay values are 32-bit quantities, and the VME software does not
support 32-bit setting values, the timer delay channels are represented by a pair
of analog channels which include a “coarse” and a “fine” control. The coarse
channel is in units of msec, and the fine channel is in units of µ sec. On a
parameter page, it is easy to read out this way, especially if the engineering units
are chosen as msec for both coarse and fine channels. For timing to only msec
precision, adjustment of the coarse channel is sufficient. Fine tuning is possible
down to the hardware resolution by use of the fine control channel. This coarse
and fine treatment also helps to solve the knob resolution problem inherent with
adjustment of hi resolution devices.

The use of coarse and fine channels as described above allows for more than one
pair of coarse and fine values that can result in the same time delay. Since the
counters can be read back to provide a reading of the delay value, and since that
conversion into coarse and fine values in not ambiguous, the setting ambiguity is
resolved by allowing the fine channel to carry into or borrow from the coarse
channel when the end of its range is reached.

With the fine channel using µ sec and the coarse channel using msec, the limit in
the range of delay setting is only about 32 seconds (if we keep the values
positive). If this is insufficient for the users’ needs, then the coarse channel could
be changed to have units of 10 msec, which would allow for a range of delay
setting of about 5 minutes.

VME Clock Timer Prototype Oct 10, 1989 page 2
setting values is a clock event number. The number of such channels to be
installed can be tailored to the needs of the users based upon the intended use of
the timing channel and on how the entire clock system is organized. When a
clock event setting is made to one of these channels, it checks to see whether that
event is already selected for that timing channel. If it is, the setting is ignored. If it
is not, the current event setting of the channel to be set is first deselected, and
then the new event is selected. This insures that all such setting channels will
have unique event number setting values. Note that this logic means that one can
adjust an event number with the knob and end up with only the last clock event
selected. A zero value setting can be used to deselect an event that was set before.
But since there is actually a clock event #0, the value 256 can be used to cause
event#0 to be set.

As a shorthand means of clearing selected clock events, a special setting is
allowed that causes clearing of all selected events from the 256-byte RAM for a
given timing channel. At system reset time, when the restore of D/A settings is
taking place in channel number order, the channels holding clock event values
will reselect those events for a given timing channel. This means that a lower-
numbered channel should be used for the purpose of clearing all selected events
for that timing channel.

To provide a readout of the selected events that were set, one could merely copy
the setting value to the reading. This would partly work, but it has difficulty with
the “clear all” setting just described. To get around this, a reading of these event
channels supplies a copy of the last setting only as long as the corresponding
RAM bit remains set. As soon as it is cleared, by whatever reason, the event
channel will have its setting cleared, and the reading will then become zero also.

The readout for a “clear all” channel is a count of the number of clock events
selected for a given timing channel. This channel could be scanned for alarms to
insure that the number of selected events did not change unexpectedly. To
execute the “clear all” function, a zero value must be used for the setting. Then
the reading would naturally be expected to become zero as well.

VME Clock Timer Prototype Oct 10, 1989 page 3
Analog control field

The specification of the control parameters needed for 9513 channel control
must be contained in the Analog Control field of the analog descriptor. The
format of that 4-byte field is as follows:

type aux address

The first byte indicates the type of analog control, which in this case would use
the value $0F to specify 9513 timer type. The meaning of the other three bytes is
dependent upon the type, so we are free to choose anything convenient. Let the
aux byte specify which timer channel, whether it is the coarse or fine word, and
whether it is a delay setting, an event setting or a clear-all-events setting. The
address word is enough to indicate the board’s base address as it is presumed to
be in VME short-I/O space, which means that the upper part of the address is
$FFFF. (In fact, the base address must be on a 4K boundary, which means that
only 4 bits is really needed to specify the board’s VME base address.)

Specific values of the aux byte are:
$0x Coarse delay chan #x
$1x Fine delay chan #x
$2x Set event# for chan #x
$3x Clear all events for chan #x

The value of the x nibble is 0–1 for the prototype board. It will range from 0–7 for
the final board, since that board supports 8 timing channels. Each timing channel
will require four analog channels (or more, in order to handle multiple selected
events) to cover all choices.

The following steps are performed to set the two timer channels on the prototype
board:

Chan #0 Chan #1

$C100 → (17) $C100 → (17)

$01E1 → (01) $03E1 → (03)

$1221 → (02) $1421 → (04)

$0000 → (09) $0000 → (0B)

lsw → (11) lsw → (13)

msw* → (0A) msw* → (0C)
(63) (6C)

The numbers in parentheses are register selects at the byte at offset $810 from the
board’s base address, followed by an access to the ls byte and then the ms byte to
make up the word, each referencing the byte at offset $800 from the base address.

VME Clock Timer Prototype Oct 10, 1989 page 4

When a setting is made to a delay channel, the entire initialization logic will be
performed the first time a delay is written. The coarse and fine channels should
be arranged to be consecutive channels so the setting software can put the two
halves together.

The lsw and msw* refer to the lo order and modified hi order words of the 32-bit
setting. The last step does the Load and Arm operation. If the Master Mode
register is read and found to not be $C100, the entire chip must be initialized. If
the a timing channel’s mode register is read and has the value not ending in $E1,
then that counter must be initialized as above. If the Master Mode register looks
good, and the counter’s mode register also looks good, the only the lsw and then
the msw* words should be written to set the counter delay. The other steps
should be skipped.

Internals
A new analog setting routine called SET9513 was written to support all

settings for this board. It is invoked when the analog control type byte=$0F. It
uses the aux byte and the addr word to do its I/O, including initializing the 9513
chip when necessary.

Three new data access table routines were written to support readings of the
types mentioned here. Type $17 invokes RDEVCNT to tally the number of clock
events selected for a given set of timing channels on one board. Type $18
invokes RDEVNTS to test whether the last selected event is still selected in the
trigger RAM. Type $19 invokes RD9513D to read back the coarse and fine delay
counts.

All four new routines are contained in the MOD9513 module of 500 lines of code
which assembles to about 900 bytes.

